

# Electron-Induced Dissociation of CO<sub>2</sub> on TiO<sub>2</sub>(110)

Junseok Lee,<sup>\*,†,†</sup> Dan C. Sorescu,<sup>†</sup> and Xingyi Deng<sup>†,†</sup>

<sup>+</sup>National Energy Technology Laboratory, Department of Energy, Pittsburgh, Pennsylvania 15236, United States <sup>+</sup>URS, P.O. Box 618, South Park, Pennsylvania 15129, United States

#### Supporting Information

**ABSTRACT:** The electron-induced dissociation of  $CO_2$  adsorbed at the oxygen vacancy defect on the  $TiO_2(110)$  surface has been investigated at the single-molecular level using scanning tunneling microscopy (STM). Electron injection from the STM tip into the adsorbed  $CO_2$  induces the dissociation of  $CO_2$ . The oxygen vacancy defect is found to be healed by the oxygen atom released during the dissociation of  $CO_2$  is one-electron process. The bias-dependent dissociation yield reveals that the threshold energy for electron-induced dissociation of  $CO_2$  is 1.4 eV above the conduction-band minimum of  $TiO_2$ . The formation of a transient negative ion by the injected electron is considered to be the key process in  $CO_2$  dissociation.

ctivation of CO<sub>2</sub> followed by its chemical conversion into Auseful organic compounds can be a key process in reducing the amount of CO<sub>2</sub> emitted by human activity and potentially utilizing (or reusing) the CO<sub>2</sub> to generate useful products.<sup>1</sup> The thermal reduction of  $\mathrm{CO}_2$  requires high temperatures because of the thermodynamic stability of the CO<sub>2</sub> molecule.<sup>2</sup> One of the promising alternatives is the reduction of CO<sub>2</sub> using photogenerated electrons on photocatalysts.<sup>3</sup> Electron-transfer processes on photocatalysts such as TiO2 are thus a primary area of research in the photoreduction of  $CO_2$ .<sup>4</sup> Since the discovery of the photoactivity of  $TiO_2$ ,<sup>5,6</sup> considerable progress in understanding various chemical and physical processes on TiO2 surfaces has been made.<sup>7</sup> The photoreduction of  $CO_2$  is a multistep process involving both activation of CO2 and dissociation of the OC-O bond. The key initial step is the activation of  $CO_2$ through the transfer of photogenerated electrons in the photocatalyst.<sup>8</sup> Despite the wide use of TiO<sub>2</sub> in photocatalysis,<sup>5</sup> especially in CO<sub>2</sub> photoreduction studies,<sup>3</sup> to the best of our knowledge, little atomic-scale understanding of electron-induced chemistry of CO<sub>2</sub> on the TiO<sub>2</sub> surface is available. In this work, we used tunneling electrons from the STM  $tip^{10-13}$  to induce dissociation of individual CO2 molecules adsorbed at oxygen vacancy defects on a model photocatalyst  $TiO_2(110)$ surface, aiming to provide a microscopic view of the electroninduced CO<sub>2</sub> activation process. The oxygen vacancy defect has been found to be healed by the O atom released during the dissociation of CO<sub>2</sub>. We further demonstrate that the dissociation of  $CO_2$  is driven by a one-electron process with a threshold energy of 1.4 eV above the conduction-band minimum (CBM) of TiO<sub>2</sub>.

A schematic of the TiO<sub>2</sub>(110) surface containing an oxygen vacancy defect (V<sub>O</sub>),<sup>14</sup> a bridging hydroxyl (OH<sub>b</sub>),<sup>15</sup> and a CO<sub>2</sub> adsorbed at a V<sub>O</sub> site<sup>16</sup> is shown in Figure 1A along with an inset figure depicting the tilted adsorption geometry of CO<sub>2</sub> at the V<sub>O</sub> site.<sup>16</sup> The most stable adsorption of CO<sub>2</sub> on TiO<sub>2</sub>(110) takes place at the V<sub>O</sub> site in a nearly linear configuration with an adsorption energy of 0.44 eV. One of the oxygen atoms of the CO<sub>2</sub> is located slightly above the plane of the bridging oxygen (O<sub>br</sub>) rows while the molecular axis of CO<sub>2</sub> is tilted away from the surface normal by 57° along the [110] direction.<sup>16</sup>

An STM image of the  $TiO_2(110)$  surface after exposure to  $CO_2$  at 55 K is shown in Figure 1B. Virtually all the V<sub>O</sub> sites are occupied with the  $CO_2$  features (marked with diamonds), which are brighter than the OH<sub>b</sub> features (circles). The inset STM images in Figure 1B show the same area of the surface before and after thermal diffusion of two CO<sub>2</sub> molecules away from their V<sub>O</sub> sites (dotted ellipses), clearly revealing the  $V_O$  sites under  $CO_2$ . This is in agreement with the results of previous thermal desorption studies.<sup>17,18</sup> To compare the apparent heights, we show in Figure 1C a high-resolution STM image wherein V<sub>O</sub>,  $OH_{b_2}$  and  $CO_2$  features are found in close proximity. The  $CO_2$ feature is the brightest among the three. Height profiles along the lines over the  $CO_2$  (red) and  $OH_b$  (green) are shown in Figure 1D. The apparent height of the CO<sub>2</sub> feature is 80 pm with respect to the Ti row. The symmetrical height profile of the CO<sub>2</sub> feature does not represent the theoretical adsorption configuration shown in Figure 1A, probably because of the rapid thermal motion of CO<sub>2</sub> at V<sub>O</sub> at 55 K.<sup>19</sup>

Dissociation of an adsorbed CO<sub>2</sub> molecule occurs when a positive voltage pulse is applied to the molecule. Figure 2A shows an STM image of a surface area where most of the Vo sites are occupied by  $CO_2$  molecules. Positive voltage pulses (+2.0 V, 5 pA, 1 s) were applied to each marked  $CO_2$  feature during the scan in the upward direction (Figure 2B). Sharp discontinuities of the CO<sub>2</sub> features were observed immediately after the voltage pulses. The following scan of the same area (Figure 2C) revealed dark O<sub>br</sub> rows without any CO<sub>2</sub> or V<sub>O</sub> features at the marked positions. This suggests that the Vo sites were healed by O atoms released from the  $CO_2$  molecules upon dissociation of the C-Obond. It seems that of the two C–O bonds in the  $CO_{2}$ , only the one involving the Vo-bound O dissociated, as the dissociation of  $CO_2$  always healed  $V_0$ . We did not observe any adsorbed CO or O fragments that would otherwise be found on Ti rows.<sup>20</sup> We also note that the dissociation of  $CO_2$  by voltage pulses is a local process, as voltage pulses to a CO<sub>2</sub> feature did not affect the adjacent CO2 molecules.

 Received:
 May 3, 2011

 Published:
 June 07, 2011



**Figure 1.** (A) Schematic showing an oxygen vacancy defect  $(V_{O})$  (black square), a bridging hydroxyl (OH<sub>b</sub>) (black circle), and a CO<sub>2</sub> molecule adsorbed at a  $V_O$  site on the reduced TiO<sub>2</sub>(110)-(1 × 1) surface. Fivefold-coordinated Ti(5f) atoms and bridging oxygens (O<sub>br</sub>) are indicated in red and blue respectively. The molecular axis of the adsorbed CO<sub>2</sub> is perpendicular to the direction of the bridging-oxygen row ([001] azimuth) and is tilted away from the surface normal by  $57^{\circ}$ , as shown in the inset figure. (B) STM image (1.5 V, 5 pA, 15 nm  $\times$ 15 nm) of the TiO<sub>2</sub>(110) surface after adsorption of CO<sub>2</sub> at 55 K. All of the  $V_O$  sites are occupied by  $CO_2$ . Three  $CO_2$  and two  $OH_b$  features are marked with diamonds and circles, respectively. The inset shows two STM images (5.1 nm  $\times$  2.6 nm) of the same area on the surface. Two CO<sub>2</sub> molecules (in the dotted ellipse in the upper inset) diffused away from their V<sub>O</sub> sites, leaving two intact V<sub>O</sub> sites visible (lower inset image). (C) STM image (1.5 V, 5 pA, 3 nm  $\times$  3 nm) of an area where three different features  $(CO_2, OH_b, and V_O)$  are shown for comparison. (D) Height profiles along the red (over  $CO_2$ ) and green (over  $OH_b$ ) lines in C. The apparent height of the Ti rows is set to zero (dashed line).

In our work, electron injection into CO<sub>2</sub> was essential for dissociation of the molecule. Voltage pulses with negative biases in the range from -1.5 to -2.5 V did not result in any dissociation events out of 65 tries, suggesting that injection of holes cannot induce the dissociation of CO2. Electric-field-induced dissociation of CO2 was unlikely because the electric field calculated in our experiments was always less than 2.53 V/nm, far below the minimum value of 40 V/nm required to dissociate a CO<sub>2</sub> molecule<sup>21</sup> [see Figure S1 in the Supporting Information (SI)]. Thermal dissociation of CO<sub>2</sub> was also ruled out because of the high thermal activation energy needed to dissociate the C-O bond (the dissociation energy of the C–O bond in neutral  $CO_2$  is 5.45 eV in the gas phase<sup>22</sup>). We show in Figure S2 that hypothetical thermal dissociation of  $CO_2$  at  $V_0$  on  $TiO_2(110)$  leading to either adsorbed or desorbed CO requires at least 1.69 eV of thermal activation energy. However, it is likely that the CO2 molecule would desorb from  $TiO_2(110)$  before the thermal dissociation could take place, in view of the fact that the adsorption energy of  $CO_2$  at  $\hat{V}_0$  on  $TiO_2(110)$  is 0.44 eV.<sup>16</sup> Moreover, one would expect to observe nonlocal dissociation/desorption events in the thermal process. We therefore conclude that the dissociation of CO<sub>2</sub> observed in this work is an *electron-induced* process.



Figure 2. (A) STM image (1.5 V, 5 pA, 5.1 nm  $\times$  6.4 nm) of the  $TiO_2(110)$  surface before voltage pulses were applied to 18 adsorbed  $CO_2$  features (marked with  $\times$  symbols). Two unknown bright features (marked with black dots) were used as reference positions. The feature with a red  $\times$  is a CO<sub>2</sub> feature located right next to an unknown adsorbate. (B) During the upward scan of the area, voltage pulses (+2.0 V, 5 pA, 1 s) were applied to each CO<sub>2</sub> feature marked in A. Because of dissociation, only the lower portions of the CO<sub>2</sub> features are visible. Adjacent CO2 molecules were not affected by the voltage pulses. For comparison, no voltage pulse was applied to the CO<sub>2</sub> in the dotted circle. Some sharp noise lines appear, probably caused by the unstable tip condition after pulsing or mobile fragments. (C) STM image of the same area after application of the voltage pulses. White  $\times$  symbols represent the original positions of the adsorbed CO<sub>2</sub> molecules before the voltage pulses. Dark Obr rows resulting from healing of the Vo sites are clearly visible. The CO<sub>2</sub> feature in the dotted circle remained intact. In the lower-left part of the image, four Vo features are visible that can be associated with brighter features at the corresponding positions in A. A slight change in the shape of the reference object was observed after the pulsing experiment. (D) Tunneling current trace during a V =+2.1 V, I = 5 pA pulse. Electrons tunneled from the STM tip into the sample at the positive sample bias. The drop in the current at t = 200 ms(from 14 to 2.8 pA) was due to the dissociation of  $CO_2$ . (E) Distribution of electron exposure times resulting in dissociation of CO2. A total of 500 analyses of the current traces are shown. The sampling bin width was 10 ms. Blue dots represent the numbers of CO<sub>2</sub> dissociation events in the time bins. The data were fitted to a single-exponential decay function with a decay constant  $\tau = 0.21$  s. Error bars are  $n_t^{1/2}$  (Poisson noise), where  $n_t$  is the number of events in time bin t. (F) Log-log plot of the dissociation rate as a function of tunneling current I at a bias voltage of +2.1 V. The solid red line is a least-squares fit to the power law  $I^n$ . The exponent was found to be  $n = 1.03 \pm 0.09$ .

Monitoring the tunneling current trace as a function of time during the voltage pulse provides critical information on the electron-induced process.<sup>10,11</sup> An example of a tunneling current trace during a voltage pulse to a CO<sub>2</sub> feature at +2.1 V is shown in Figure 2D. The STM tip was positioned over a selected CO<sub>2</sub> molecule, and a voltage pulse was applied with the tip height maintained at a fixed distance from the CO<sub>2</sub>. The sudden drop in the tunneling current as shown in Figure 2D thus represents a change under the STM tip, in our case corresponding to a successful CO<sub>2</sub> dissociation event. The distribution of the measured electron exposure time (*t*) resulting in successful CO<sub>2</sub> dissociation events showed an exponential behavior (Figure 2E; see the SI for details). We were able to extract the time constant,  $\tau$ , which represents the average electron exposure time resulting



**Figure 3.** (A) Dissociation probability ( $P_{\rm diss}$ ) as a function of bias voltage. The threshold voltage was  $V_{\rm thres} = +1.7$  V, and  $P_{\rm diss}$  approched 1 at +2.2 V. It should be noted that the values of  $P_{\rm diss}$  were obtaine d under a specific voltage pulse condition (5 pA, 1 s). The solid line is a guide to eye. (B) The electron-transfer process at the STM tip/CO<sub>2</sub>/TiO<sub>2</sub> interface. Above  $eV_{\rm thres} = 1.7$  eV, the electrons start to tunnel into the negative-ion state of the adsorbed CO<sub>2</sub>. (C) Schematics of an electron-induced CO<sub>2</sub> dissociation process. After successful electron transfer from the STM tip, the CO<sub>2</sub> molecule becomes negatively charged (dotted ellipse). The dissociation of CO<sub>2</sub> supplies an oxygen atom that heals the V<sub>O</sub> site.

in a dissociation event. The dissociation rate  $(R_{\rm diss})$  was then obtained as the reciprocal of the time constant  $(1/\tau)$ . Figure 2F shows a log–log plot of  $R_{\rm diss}$  as a function of the tunneling current *I* for a total of 2262 dissociation events. A least-squares fit of the data yielded a slope  $n = 1.03 \pm 0.09$ , where *n* is the exponent in the power-law relationship  $R_{\rm diss} \propto I^n$ ,<sup>10</sup> indicating that the CO<sub>2</sub> dissociation in our work is a *one-electron-driven* process. The dissociation yield per electron remained nearly constant [ $Y_{\rm avg} = (2.79 \pm 0.63) \times 10^{-7}$ ] over the current range used in the experiment, as would be expected for a one-electron process (see Figure S3).

The dissociation probability ( $P_{\rm diss}$ ) was found to depend on the energy of the injected electrons from the STM tip. A plot of  $P_{\rm diss}$  as a function of bias voltage at 5 pA (1 s pulse duration) is shown in Figure 3A. We did not observe the dissociation of CO<sub>2</sub> at bias voltages below +1.6 V. The threshold voltage ( $V_{\rm thres}$ ) for the dissociation of CO<sub>2</sub> was +1.7 V with a probability  $P_{\rm diss}$  = 0.02. The value of  $P_{\rm diss}$  increased with increasing bias voltage, eventually approaching 1 at +2.2 V. The voltage dependence suggests that the electron-induced dissociation of CO<sub>2</sub> occurs through a well-defined electronic state of CO<sub>2</sub>.

A transient negative ion can be formed in the gas phase upon attachment of a low-energy electron to a molecule, and a metastable negative ion can subsequently dissociate into fragments. This process is called dissociative electron attachment (DEA).<sup>23</sup> It is also known that the lowest-energy DEA process of CO<sub>2</sub> in the gas phase occurs through the <sup>2</sup>Π<sub>u</sub> state.<sup>23</sup> Dissociation of CO<sub>2</sub><sup>-</sup> into a neutral CO and an O<sup>-</sup> ion occurs after an initial Franck–Condon-type transition of neutral CO<sub>2</sub> to the negative ion followed by internal configuration changes.<sup>23</sup> The weak interaction between CO<sub>2</sub> and the TiO<sub>2</sub>(110) surface suggests that the electron-induced dissociation of  $CO_2$  adsorbed on  $TiO_2(110)$  occurs through a DEA process similar to that in the gas phase. The main difference for the adsorbed  $CO_2$  is the presence of the  $V_O$  site on the  $TiO_2$  surface, which can capture the fragment O atom. Because of the large binding energy of  $O_{br}$  on  $TiO_2$ ,<sup>24</sup> the DEA process for  $CO_2$  adsorbed on  $TiO_2$ -(110) may occur more easily than that for  $CO_2$  in the gas phase. The affinity of the  $V_O$  site for an O atom has also been demonstrated in  $O_2$  dissociation on the  $TiO_2(110)$  surface.<sup>25</sup>

According to the observed V<sub>thres</sub> value, tunneling electrons from the Fermi level  $(E_{\rm F})$  of the STM tip can be injected into the  $CO_2$  molecule to form  $CO_2^-$  in the  ${}^2\Pi_u$  state only if the bias voltage is higher than  $V_{\text{thres}} = 1.7 \text{ eV}$ , as shown in Figure 3B. The position of the  $E_{\rm F}$  of TiO<sub>2</sub>(110) is ~0.3 eV below the CBM of TiO<sub>2</sub>.<sup>26</sup> Thus, the threshold energy of CO<sub>2</sub> dissociation is located 1.4 eV above the CBM. In Figure 3C, we schematically illustrate the DEA process for a  $CO_2$  molecule on  $TiO_2(110)$ . Specifically, after a tunneling electron from the STM tip is successfully attached to the adsorbed  $CO_2$  molecule, a temporary negative ion  $(CO_2^{-})$ is formed. Changes in the internal CO2 configuration such as bending and elongation of the C-O bond occur, as in the gas phase.<sup>23</sup> Upon dissociation of a C-O bond, the O fragment heals the V<sub>O</sub> site and is incorporated into the O<sub>br</sub> row. The CO fragment desorbs from the surface or moves away from the reaction site, probably because it is in an excited state with some excess energy gained during the dissociation process. The excess electron most likely dissipates into the conduction band of  $TiO_2(110)$ .

In summary, we have demonstrated the electron-induced dissociation of  $CO_2$  on  $TiO_2(110)$  at the atomic scale by using STM in an attempt to mimic the initial step of CO<sub>2</sub> activation on a photocatalyst surface. Our results highlight the importance of the relative energy level of CO2 with respect to the CBM of TiO2 in the photocatalytic reduction process. In a TiO<sub>2</sub> photocatalyst sensitized with chromophores such as quantum dots, the photoexcited electrons in the photosensitizer are initially transferred to the conduction band of  $\text{TiO}_2$ .<sup>27</sup> The electrons quickly relax to the bottom of the conduction band through electron-phonon scattering.<sup>4</sup> However, our value of the threshold energy for CO<sub>2</sub> dissociation indicates that the electron affinity level of CO<sub>2</sub> lies at least 1.4 eV above the CBM of TiO<sub>2</sub>. This sets the minimum energy of the electron above the CBM required to activate CO2 under "dry" vacuum conditions. The efficiency of the initial CO<sub>2</sub> activation step (i.e., charging by the photogenerated electron) is significantly reduced as a result of electron relaxation within the conduction band. The results point to the need for a solvent- or coadsorbate-aided CO<sub>2</sub> activation process for more efficient photocatalytic reduction of CO<sub>2</sub>.

## ASSOCIATED CONTENT

**Supporting Information.** Experimental procedures, theoretical methods, and supporting figures. This material is available free of charge via the Internet at http://pubs.acs.org.

### AUTHOR INFORMATION

Corresponding Author junseok.lee@netl.doe.gov

#### ACKNOWLEDGMENT

The research was performed in support of the National Energy Technology Laboratory's ongoing research under RES Contract DE-FE0004000. J.L. and D.C.S. thank A. Cugini for support and helpful discussions. J.L. thanks C. Wang for helpful discussions during the preparation of the manuscript.

### REFERENCES

(1) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729.

(2) Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. *Science* **2010**, 330, 1797.

(3) Morris, A. J.; Meyer, G. J.; Fujita, E. Acc. Chem. Res. 2009, 42, 1983.

(4) Prezhdo, O. V.; Duncan, W. R.; Prezhdo, V. V. Prog. Surf. Sci. 2009, 84, 30.

(5) Fujishima, A.; Honda, K. Nature 1972, 238, 37.

(6) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. *Nature* **1979**, 277, 637.

(7) Diebold, U. Surf. Sci. Rep. 2003, 48, 53.

(8) Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191.

(9) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 735.

(10) Stipe, B. C.; Rezaei, M. A.; Ho, W.; Gao, S.; Persson, M.; Lundqvist, B. I. *Phys. Rev. Lett.* **1997**, *78*, 4410.

(11) Pascual, J. I.; Lorente, N.; Song, Z.; Conrad, H.; Rust, H. P. *Nature* **2003**, 423, 525.

(12) Komeda, T.; Kim, Y.; Fujita, Y.; Sainoo, Y.; Kawai, M. J. Chem. Phys. **2004**, 120, 5347.

(13) Sloan, P. A.; Palmer, R. E. Nature 2005, 434, 367.

(14) Diebold, U.; Anderson, J. F.; Ng, K. O.; Vanderbilt, D. *Phys. Rev. Lett.* **1996**, 77, 1322.

(15) Suzuki, S.; Fukui, K.; Onishi, H.; Iwasawa, Y. Phys. Rev. Lett. 2000, 84, 2156.

(16) Sorescu, D. C.; Lee, J.; Al-Saidi, W. A.; Jordan, K. D. J. Chem. Phys. 2011, 134, No. 104707.

(17) Henderson, M. A. Surf. Sci. 1998, 400, 203.

(18) Thompson, T. L.; Diwald, O.; Yates, J. T., Jr. J. Phys. Chem. B 2003, 107, 11700.

(19) Maksymovych, P.; Sorescu, D. C.; Dougherty, D.; Yates, J. T., Jr. J. Phys. Chem. B **2005**, 109, 22463.

(20) Lee, J.; Zhang, Z.; Deng, X.; Sorescu, D. C.; Matranga, C.; Yates, J. T., Jr. J. Phys. Chem. C 2011, 115, 4163.

(21) Calvaresi, M.; Martinez, R. V.; Losilla, N. S.; Martinez, J.; Garcia, R.; Zerbetto, F. J. Phys. Chem. Lett. **2010**, *1*, 3256.

(22) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Molecular Spectra and Molecular Structure, Vol. 4; Van Nostrand Reinhold: New York, 1979.

(23) Christophorou, L. G.; McCorkle, D. L.; Christodoulides, A. A. In *Electron-Molecular Interactions and Their Applications*; Christophorou, L. G., Ed.; Academic Press: New York, 1983; Vol. 1.

(24) Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Surf. Sci. Rep. 2007, 62, 219.

(25) Scheiber, P.; Riss, A.; Schmid, M.; Varga, P.; Diebold, U. Phys. Rev. Lett. 2010, 105, No. 216101.

(26) Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X.-Y. *Science* **2010**, *328*, 1543.

(27) Watson, D. F.; Meyer, G. J. Annu. Rev. Phys. Chem. 2005, 56, 119.